Today we start to consider other topic than mechanism design.
Review of Braess' paradox
A road network for sending traffic from location \(s\) to location \(t\)
Latency of the long wide road: \(1\) hour
Latency of the short narrow road: \(x\) hours, where \(x\) is the fraction traffic
graph TD
1((S))
2((T))
3((A))
4((B))
1-->|short narrow road|3
1-->|long wide road|4
3-->|long wide road|2
4-->|short narrow road|2
Travel time: \(1.5\) hours 因为均衡:左边多了会有人到右边,右边多了会有人到左边
If authority build a very fast short-cut from A to B:
graph TD
1((S))
2((T))
3((A))
4((B))
1-->|short narrow road|3
1-->|long wide road|4
3-->|long wide road|2
4-->|short narrow road|2
3-->|teleportation|4
All users have an incentive to use the new road
假设只走左边的有 \(\alpha\),只走右边的有 \(\beta\),使用传送节点的有 \(1-\alpha-\beta\)。
对于只走左边的时间:\((\alpha+(1-\alpha-\beta))+1=1-\beta+1=2-\beta\)
同理,对于只走右边的时间:\(1+1-\alpha=2-\alpha\)
对于使用传送节点的时间:\(1-\beta+0+1-\alpha=2-\alpha-\beta\)
可以看出使用传送节点对于所有人都是最优选。
New travel time: \(2\) hours
Price of anarchy: quantifies inefficiencies
Here, \(\text{price of anarchy}=\frac{4}{3}\).
Pigou's example
One unit of traffic from \(s\) to \(t\).
graph TD
1((S))
2((T))
1-->|c ( x ) =1|2
1-->|c ( x ) =x|2
Equilibrium: all traffic uses the lower path (\(x=100\%\), travel time = \(1\))
Optimal route (i.e., minimizing average travel time): half traffic through the left path, half traffic from the right path.
Optimal average travel time \(=\frac{3}{4}\)
Price of anarchy \(=\frac{4}{3}\)
What if for short path, \(c(x)=x^p\)?
graph TD
1((S))
2((T))
1-->|c ( x ) =1|2
1-->|c ( x ) =x^p|2
Optimal route: some traffic through the left path, some traffic through the right path. $$ \text{Average travel time}=1\times(1-x)+x\times x^p $$ Optimal average time \(=\) minimal of average travel time \(=(\frac{1}{p+1})^\frac{p+1}{p}-(\frac{1}{p+1})^\frac{1}{p}+1\)
Price of anarchy depends on \(p\)
Ingredients of a Pigou-like network
- Two nodes, \(s\) and \(t\)
- Two edges between \(s\) and \(t\), called the upper (left) and lower (right) path
- A non-negative traffic rate \(r\)
- A cost function \(c(\cdot)\) on the lower path
- Constant cost function equal to \(c(r)\) on the upper path
graph TD
1((S))
2((T))
1-->|c ( r )|2
1-->|c ( x )|2
The PoA of a Pigou-like network
\(\forall x\gt r,\exists x'\in[0,r]:x\cdot c(x)+(r-x)\cdot c(r)\ge x'\cdot c(x')+(r-x')\cdot c(r)\)
To prove this, it suffices to observe that
\(x\cdot c(x)+(r-x)\cdot c(r)=r\cdot c(r)+x(c(x)-c(r))\ge r\cdot c(r)=x'\cdot c(x')+(r-x')\cdot c(r)\) for \(x'=r\in[0,r]\)
Price of Anarchy equals:
cost at equilibrium (all routing traffic on the lower path) over
cost of routing a traffic fraction \(x\) on the lower path + cost of routing a traffic fraction \(r-x\) on the upper path
Family of latency functions \(C\).
- linear latencies: \(c(x)=ax+b\), \(a,b\ge0\)
- quadratic latencies: \(c(x)=ax^2+bx+c\), \(a,b,c\ge0\)
- polynomial of degree d: \(c(x)=\sum_{j=0}^da_jx^j\), \(a_j\ge0\)
- concave non-decreasing function 上凸非减函数
Let \(C\) be a set of non-negative, continuous, non-decreasing cost functions: $$ a(C)=\sup_{c\in C}\sup_{r\ge0}\sup_{x\ge0}{\frac{r\times c(r)}{x\times c(x)+(r-x)\times c(r)}} $$ Application: \(\text{PoA}=\frac{4}{3}\) for linear (affine) or concave cost functions.
- \(c(x)=\alpha x+\beta\):
\(a(\text{linear})=\sup_{\alpha,\beta\ge0}\sup_{r\ge0}\sup_{x\ge0}\frac{r(\alpha r+\beta)}{x(\alpha x+\beta)+(r-x)(\alpha r+\beta)}\)
derivative of denominator \(=0\Rightarrow 2\alpha x+\beta-\alpha r-\beta=0\Rightarrow x=\frac{r}{2}\)
Thus, the denominator becomes: \(\alpha\frac{r^2}{4}+\frac{\beta r}{2}+\alpha\frac{r^2}{2}+\frac{\beta r}{2}=\frac{3}{4}\alpha r^2+\beta r\ge\frac{3}{4}r(\alpha r+\beta)\)
所以无序的代价 PoA 最大值是 \(\frac{4}{3}\)
- \(a(\text{concave non-decreasing})=\frac{4}{3}\)
For every concave non-decreasing latency function \(c\), there is a linear latency function \(c'\) with \(c(r)=c'(r)\), s.t. \(\frac{r\cdot c(r)}{x\cdot c(x)+(r-x)\cdot c(r)}\le\frac{r\cdot c'(r)}{x\cdot c'(x)+(r-x)\cdot c'(r)}\)
通过画图可以证明,上凸函数和线性函数 \(x\cdot c(x)\ge x\cdot c'(x)\), \((r-x)\cdot c(r)=(r-x)\cdot c'(r)\). 分子相等,分母左边比右边小。
The Price of anarchy of selfish routing
Theorem
For every set \(C\) of cost functions, and every selfish routing network with cost functions in \(C\), the Price of Anarchy is at most \(a(C)\).
Selfish routing network: connecting node \(s\) to node \(t\)
Equilibrium flow: traffic travels only on shortest \(s-t\) paths.
Volume of \(r\) of users who want to route traffic from \(s\) to \(t\).
\(c_e\): latency function of edge \(e\)
\(f_e\): total volume of user who cross edge \(e=\sum_{p,e\in p}f_p\)
\(p\): a path from \(s\) to \(t\) in \(G\).
\(f_p\): total volume of user who use path \(p\)
Equilibrium condition: For every path \(p\) from \(s\) to \(t\), s.t. \(f_p\gt0\), the total latency \(\sum_{e\in p}c_e(f_e)\) is minimum possible.
\(C(f)\): total cost of set of strategies \(f\)
\(f^*\) optimal set of strategies i.e. the strategies minimizing the total latency.
Cost of a flow: $$ C(f)=\sum_{e\in E}f_e\times c_e(f_e) $$ Assume that \(f\) and \(f^*\) are an equilibrium and optimal flow respectively, then $$ \frac{C(f)}{C(f^*)}\le a(C) $$
Proof
Information we will use in the proof: Why don't the players use their optimal strategies at equilibrium.
Observation: For a path \(p\) with \(f_p\gt0\), we have that the latency is minimum possible. i.e. \(\sum_{e\in p}c_e(f_e)=L\) ① which is as low as possible. Meaning that for every path \(p\) with \(f^*_p\gt0\), We have $$ \sum_{e\in p}c_e(f_e)\ge L ②. $$
By summing ① for all paths with \(f_p\gt0\) from \(s\) to \(t\), we have
\[ \sum_{p:f_p\gt 0}f_p \cdot \sum_{e\in p}c_e(f_e)=\sum_{p: f_p\gt 0}L\cdot f_p=r\times L \]
- By doing the same with ② and all paths with \(f^*_p\gt0\) from \(s\) to \(t\), we have
\[ \sum_{p:f^*_p\gt0}f^*_p\cdot\sum_{e\in p}c_e(f_e)\ge\sum_{p:f^*_p\gt0}f^*_pL=r\times L ③ \]
- The Left Hand Side of ③ is equal to \(\sum_{p:f_p\gt0}f_p\cdot\sum_{e\in p}c_e(f_e)\)
\[ =\sum_{e\in E}\sum_{p:f_p\gt0,e\in p}f_p\cdot c_e(f_e)=\sum_{e\in E}c_e(f_e)\sum_{p:f_p\gt0,e\in p}f_p ④ \]
- The LHS of ④ is equal to \(\sum_{e\in p}\sum_{p:f^*_p\gt0}f^*_p\cdot c_e(f_e)\)
\[ =\sum_{e\in E}\sum_{e\in p,p:f^*_p\gt0}f^*_pc_e(f_e)=\sum_{e\in E}c_e(f_e)\sum_{e\in p,p:f^*_p\gt0}f^*_p=\sum_{e\in E}f^*_ec_e(f_e) \]
- From ③ and ④ and their equivalent expressions, we have \(\sum_{e\in E}(f^*_e-f_e)c_e(f_e)\ge0\)
\[ a(c)=\sup_{c\in C}\sup_{r\ge0}\sup_{x\ge0}\frac{rc(r)}{xc(x)+(r-x)c(r)} \]Thus, using \(c=c_e,r=f_e,x=f^*_e\), we have that
\[ a(c)\ge\frac{f_ec_e(f_e)}{f^*_ec_e(f^*_e)+(f_e-f^*_e)c(f_e)} \]\[ \Rightarrow f_ec_e(f_e)\le a(c)f^*_ec_e(f^*_e)+a(c)(f_e-f^*_e)c_e(f_e) \]Summing over all edges, we have
\[ \sum_{e\in E}f_ec_e(f_e)\le a(c)\sum_{e\in E}f^*_ec_e(f^*_e)+a(c)\sum_{e\in E}(f^*_e-f_e)c_e(f_e) \]\[ \le a(c)\sum_{e\in E}f^*_ec_e(f^*_e) \]\[ \Rightarrow c(f)=\sum_pf_p\sum_{e\in p}c_e(f_e)=\sum_p\sum_ef_pc_e(f_e)=\sum_ef_ec_e(f_e) \]\[ \therefore c(f)\le a(c)\cdot c(f^*) \]